Rechercher dans ce blog

Wednesday, September 2, 2020

Accelerating homogenization of the global plant–frugivore meta-network - Nature.com

  • 1.

    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. Biogeography. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60 (2017).

    Google Scholar 

  • 5.

    Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).

    Google Scholar 

  • 6.

    Guimarães, P. R. Jr, Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017).

    ADS  PubMed  Google Scholar 

  • 7.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    CAS  PubMed  Google Scholar 

  • 8.

    Wallace, A. R. The Geographical Distribution of Animals and Plants (Harper & Brothers, 1876).

  • 9.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 18–61 (CABI, 2000).

  • 12.

    Nathan, R. & Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000).

    CAS  PubMed  Google Scholar 

  • 13.

    Herrera, C. M. in Plant–Animal Interactions: An Evolutionary Approach (eds Herrera, C. M. & Pellmyr, O.) 185–208 (Blackwell, 2002).

  • 14.

    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (2002).

    Google Scholar 

  • 15.

    Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evol. Syst. 35, 1–29 (2004).

    Google Scholar 

  • 16.

    McConkey, K. R. et al. Seed dispersal in changing landscapes. Biol. Conserv. 146, 1–13 (2012).

    Google Scholar 

  • 17.

    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).

    PubMed  Google Scholar 

  • 18.

    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One 8, e66993 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Thompson, J. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • 23.

    Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    ADS  CAS  PubMed  MATH  Google Scholar 

  • 24.

    Medeiros, L. P., Garcia, G., Thompson, J. N. & Guimarães, P. R. Jr. The geographic mosaic of coevolution in mutualistic networks. Proc. Natl Acad. Sci. USA 115, 12017–12022 (2018).

    CAS  PubMed  Google Scholar 

  • 25.

    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    PubMed  Google Scholar 

  • 26.

    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).

    Google Scholar 

  • 28.

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. (2010).

  • 29.

    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).

    Google Scholar 

  • 30.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Mello, M. A. R. et al. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6, e17395 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Schleuning, M. et al. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17, 454–463 (2014).

    PubMed  Google Scholar 

  • 34.

    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).

  • 35.

    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 1395–1401 (2016).

    Google Scholar 

  • 36.

    de Assis Bomfim, J., Guimarães, P. R., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).

    Google Scholar 

  • 37.

    Castaño, J. H., Carranza, J. A. & Pérez-Torres, J. Diet and trophic structure in assemblages of montane frugivorous phyllostomid bats. Acta Oecol. 91, 81–90 (2018).

    ADS  Google Scholar 

  • 38.

    Escribano-Avila, G., Lara-Romero, C., Heleno, R. & Traveset, A. in Ecological Networks in the Tropics (eds Dáttilo, W. & Rico-Gray, V.) 93–110 (Springer, 2018).

  • 39.

    Laurindo, R. S., Novaes, R. L. M., Vizentin-Bugoni, J. & Gregorin, R. The effects of habitat loss on bat-fruit networks. Biodivers. Conserv. 28, 589–601 (2019).

    Google Scholar 

  • 40.

    Dugger, P. J. et al. Seed-dispersal networks are more specialized in the Neotropics than in the Afrotropics. Glob. Ecol. Biogeogr. 28, 248–261 (2019).

    Google Scholar 

  • 41.

    Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

    Google Scholar 

  • 42.

    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Trøjelsgaard, K., Heleno, R. & Traveset, A. Native and alien flower visitors differ in partner fidelity and network integration. Ecol. Lett. 22, 1264–1273 (2019).

    PubMed  Google Scholar 

  • 44.

    Aslan, C. E. Implications of non-native species for mutualistic network resistance and resilience. PLoS One 14, e0217498 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Araujo, A. C. et al. Spatial distance and climate determine modularity in a cross-biomes plant–hummingbird interaction network in Brazil. J. Biogeogr. 45, 1846–1858 (2018).

    Google Scholar 

  • 46.

    Emer, C. et al. Seed-dispersal interactions in fragmented landscapes—a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).

    PubMed  Google Scholar 

  • 47.

    Nnakenyi, C. A., Traveset, A., Heleno, R., Minoarivelo, H. O. & Hui, C. Fine-tuning the nested structure of pollination networks by adaptive interaction switching, biogeography and sampling effect in the Galápagos Islands. Oikos 128, 1413–1423 (2019).

    Google Scholar 

  • 48.

    Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford Univ. Press, 2006).

  • 49.

    Briatte, F. ggnetwork: geometries to plot networks with ‘ggplot2’. R package v.0.5.1. (R Foundation for Statistical Computing, 2016).

  • 50.

    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: draw geographical maps. R package v.3 (R Foundation for Statistical Computing, 2013).

  • 51.

    Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E. 70, 066111 (2004).

    ADS  Google Scholar 

  • 52.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695 (2006).

  • 53.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Google Scholar 

  • 55.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 56.

    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. Interaction 1, 0.2413793 (2008).

    Google Scholar 

  • 57.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Marquitti, F. M. D., Guimarães, P. R., Pires, M. M. & Bittencourt, L. F. MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37, 221–224 (2014).

    Google Scholar 

  • 59.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    ADS  CAS  Google Scholar 

  • 60.

    Geraci, M. Linear quantile mixed models: the lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).

  • Let's block ads! (Why?)



    "network" - Google News
    September 02, 2020 at 10:02PM
    https://ift.tt/2Goapo7

    Accelerating homogenization of the global plant–frugivore meta-network - Nature.com
    "network" - Google News
    https://ift.tt/2v9ojEM
    Shoes Man Tutorial
    Pos News Update
    Meme Update
    Korean Entertainment News
    Japan News Update

    No comments:

    Post a Comment

    Search

    Featured Post

    Comcast reluctantly agrees to stop its misleading “10G Network” claims - Ars Technica

    Enlarge Comcast Comcast has reluctantly agreed to discontinue its "Xfinity 10G Network" brand name after losing an appeal of...

    Postingan Populer